YSI ProDSS Conductivity & Temperature Sensor

The YSI ProDSS conductivity & temperature sensor is a digital smart sensor featuring welded titanium construction for use with the ProDIGITAL family of instruments.

Features

  • 0 to 200 mS/cm measurement range
  • T63<2 sec response time
  • ±0.5% of reading or 0.001 mS/cm accuracy from 0 to 100
Your Price $791.35
Stock More On The Way   

Overview
The YSI ProDSS conductivity & temperature sensor is a digital smart sensor featuring welded titanium construction for use with the ProDIGITAL family of instruments. Compatible instruments include the ProDSS Meter, ProSwap Meter, and ProSwap Logger. The sensor provides accurate and fast temperature data. It is also used to calculate salinity, specific conductance, and total dissolved solids.

Temperature Thermistor
The temperature sensor uses a highly stable and aged thermistor with low-drift characteristics. The thermistor’s resistance changes with temperature. The measured resistance is then converted to temperature using an algorithm. The temperature sensor receives a multi-point NIST traceable wet calibration, and the accuracy specification of 0.01˚C is valid for the expected life of the probe. No calibration or maintenance of the temperature sensor is required, but accuracy checks can be conducted.

Conductivity Electrodes
The conductivity sensor uses four internal, pure-nickel electrodes to measure solution conductance. Two of the electrodes are current-driven, and two are used to measure the voltage drop. The measured voltage drop is then converted into a conductance value in milliSiemens (millimhos). To convert this value to a conductivity value in milliSiemens per cm (mS/cm), the conductance is multiplied by the cell constant that has units of reciprocal cm (cm-1). The cell constant for the conductivity cell is approximately 5.5/cm ±10%. For most applications, the cell constant is automatically determined (or confirmed) with each deployment of the system when the calibration procedure is followed.

Temperature Compensation
ProDSS sensors have internal thermistors for quality assurance purposes. Turbidity uses the internal thermistor for temperature compensation, while all other ProDSS sensors reference the C/T probe for temperature compensation. To display and log temperature, a C/T probe must be installed on a ProDIGITAL meter.

ProDSS Smart Sensor Specifications:

Parameter
Range Accuracy* Resolution

Conductivity

0 to 200 mS/cm

From 100 to 200 mS/cm: ± 1% 

**0.001, 0.01 or 0.1 µS/cm

Temperature

-5 to 70 °C

± 0.2 °C 

0.1 °C or 0.1 °F

Dissolved Oxygen

0 to 50 mg/L

From 0 to 20 mg/L: ± 1% 

From 20 to 50 mg/L: ± 8%

0.01 mg/L or 0.1 mg/L 

pH

0 to 14

± 0.2 

0.01

ORP

-1999 to 1999 mV

± 20 mV

0.1 mV

Turbidity

0 to 4000 FNU

From 0 to 999 FNU: ± 2%

From 1000 to 4000 FNU: ± 5%

0.1 FNU

Freshwater Total Algae

0 to 100 µg/L PC

r2 = 0.999

0.01 µg/L PC

Saltwater Total Algae

0 to 280 µg/L PE

r2 = 0.999

0.01 µg/L PE

Nitrate

0 to 200 mg/L

± 10%

0.01 mg/L

Ammonium

0 to 200 mg/L 

± 10%

0.01 mg/L

Chloride

0 to 1000 mg/L Cl

± 15%

0.01 mg/L


*Reference specification for each sensor for more details on accuracy
** Range dependent

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI ProDSS Conductivity & Temperature Sensor
626902
ProDSS conductivity & temperature sensor
$791.35
More On The Way  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Testing CO2 Removal Strategies in the Pacific Northwest

The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.

Smart Buoys Advance Climate Monitoring in Swiss Lakes

Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.

Connecting with Nature in Real-Time at the Abernathy Field Station

Just five miles away from Washington and Jefferson (W&amp;J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.

Riding the Renewable Wave: Testing Wave Energy Converters at Oregon’s PacWave Site

Seven miles off Oregon’s weather-beaten coastline, the world’s biggest wave power testing facility, PacWave, is primed to put the latest renewable energy technology to the test. “There is a huge amount of energy that is not harvested in the ocean,” states the team at Oregon State University involved in the PacWave project. When it comes to harnessing the power of the waves, “It's exciting because it [wave power] is a non-polluting, non-carbon burning technology,” the team says. Wave Power The U.S. Energy Information Administration explains that tidal energy harnesses the flow of seawater in depth under the gravitational forces exerted by the sun and moon–the drivers of tides–while wave energy derives from the kinetic energy of wind-blown surface waves.