YSI 1003 pH/ORP (ISE) Sensor

The YSI 1003 offers simple, accurate pH and ORP measurements and is designed for minimal maintenance.

Features

  • Sealed gel reference eliminates refilling, saves time
  • YSI 1003 carefully designed to perform under all ionic strength conditions
  • Not compatible with Quatro cables
Your Price $391.40
Stock Check Availability  

Overview
The YSI 1003 combination pH/ORP sensor features a 'long-life' sealed gel reference, eliminating the need to refill. The ORP sensor features a platinum electrode for optimum performance.

Durable
The YSI 1003 pH sensors have been carefully designed to perform under all ionic strength conditions, from seawater with a conductivity of 53,000 uS/cm, to "average" freshwater lakes and rivers with conductivities of 200 to 1500 uS/cm, to pure mountain streams with conductivities as low as 15 uS/cm, which has historically been the most difficult medium with respect to accuracy, quick response to pH changes, and minimal flow dependence.

  • 1-year warranty
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
YSI 1003 pH/ORP (ISE) Sensor
605103
1003 pH/ORP (ISE) sensor, Pro Series
$391.40
Check Availability  
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Ocean acidification: University of Washington's giant plastic bags help control research conditions

With oceans becoming more acidic worldwide, scientists are getting creative in designing experiments to study them. For example, one group at the University of Washington is using giant plastic bags to study ocean acidification. Each bag holds about 3,000 liters of seawater and sits in a cylinder-like cage for stability. The group at UW, made up of professors and students, is controlling carbon dioxide levels in the bags over a nearly three-week period, during which they are looking at the effects of increased acidity on organisms living near the San Juan Islands. “These mesocosms are a way to do a traditional experiment you might do in a lab or classroom,” said Jim Murray, professor of oceanography at the University of Washington.

NOAA Alaska buoy network to monitor North Pacific ocean acidification

National Oceanic and Atmospheric Administration scientists detected signs of ocean acidification in the waters that hold the vulnerable and valuable fisheries of the North Pacific off the coast of Alaska, but they only had a snapshot of the action. “We know that in this place were important commercial and subsistence fisheries that could be at risk from ocean acidification,” said Jeremy Mathis, a NOAA Pacific Marine Environmental Laboratory researcher and professor at the University of Alaska Fairbanks. To understand how ocean acidification affects the North Pacific, NOAA scientists created a mooring network that collects constant in situ data on parameters contributing to acidification. They hope it will reveal seasonal trends and patterns left out by their snapshots.

Testing CO2 Removal Strategies in the Pacific Northwest

The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.

Smart Buoys Advance Climate Monitoring in Swiss Lakes

Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.