Solinst Model 101 P7 Probe Water Level Meters
Features
- Probe is submersible to 1000 ft. for measuring total well depth
- Non-stretch PVDF well tape with stainless steel conductors
- Permanent laser markings every 1/100 ft. or each millimeter
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Model 101 P7 Probe Water Level Meters are the industry standard for portable hand-operated meters to measure the depth of water in wells, boreholes, standpipes, and tanks. They are sturdy, easy to use, and read accurately up to 1/100 ft. or each millimeter. The Model 101 P7 Water Level Meter features a pressure-proof probe rated at 500 psi and laser-marked PVDF tape. The P7 Probe is submersible up to 1000 ft. (300 m), ideal for measuring total well depth. The sensor at the tip of the probe provides consistent measurements with almost zero displacements. The tape seal plug design allows the probe to be quickly and easily replaced if required.
Durability
The Model 101 P7 Probe Water Level Meter uses extremely durable PVDF flat tape, traceable to NIST and EU measurement standards. Each tape conductor contains 13 strands of stainless steel, and 6 strands of copper-coated steel, making the tape non-stretch and high in tensile strength and electrical efficiency. The well tape has a thick dog bone design that prevents adherence to wet surfaces and allows it to hang straight in application settings. The tape is also easy to splice. The 3/8" (10 mm) well tapes come with permanent laser markings every 1/100 ft. or each millimeter.
- (1) Solinst Model 101 P7 Probe Water Level Meter
- (1) Tape guide/datum
In The News
Wetland water level study skips modern sensor tangle for 1930s method
Environmental sensors can measure almost any physical parameter in nature, but sometimes they can overwhelm the science they are supposed to support. Jason Hill, an assistant professor of engineering at the University of Southern Indiana, wants to create a water level model that will help wetland restorers understand and predict water level fluctuations by studying water loss through the ground and evapotranspiration. The problem is his next project site has too many variables to measure. So, he’s taking an old fashioned route based on empiricism and water level measurement. Hill said that conventional techniques for estimating evapotranspiration require site specific micrometeorological data, like solar radiation, wind speed and vapor pressure.
Testing CO2 Removal Strategies in the Pacific Northwest
The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.
Smart Buoys Advance Climate Monitoring in Swiss Lakes
Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.
Connecting with Nature in Real-Time at the Abernathy Field Station
Just five miles away from Washington and Jefferson (W&J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.























