PME miniWIPER for miniDOT Logger
Features
- Completely submersible to 25m depths
- Can operate for up to 3-months at 1-hour wipe interval
- Software is supplied to change the wiping interval and check battery voltage
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The PME miniWIPER is a self-contained, completely submersible wiping device that can be used with a variety of sensors including the miniDOT Logger. It can be programmed to wipe at various intervals, and is powered from two AA Lithium batteries.
Mechanics
A small brush rotates over the sensor in order to perform a complete wipe of the sensor surface, and then rests away from the sensor to allow for accurate and continuous monitoring. The wiper is used as an anti-fouling device and prevents various organisms from growing on the sensor and interfering with data.
In The News
PME miniDOT Logger: Plunge into Data
The PME miniDOT Logger is a compact data logger that measures dissolved oxygen (DO) and temperature down to 100 meters in depth. The unit can also endure low water temperatures and is durable underneath an ice layer, which is excellent for gathering essential winter water quality data that is lacking from using less robust equipment. The high depth rating and ability to withstand frigid temperatures make the PME a reliable device that is deployable in dramatically different environments, such as a monitoring well, an inland lake or an underwater cave. The logger itself features an optical DO sensor, temperature sensor, two AA lithium batteries and a micro SD memory card.
Testing CO2 Removal Strategies in the Pacific Northwest
The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.
Smart Buoys Advance Climate Monitoring in Swiss Lakes
Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.
Connecting with Nature in Real-Time at the Abernathy Field Station
Just five miles away from Washington and Jefferson (W&J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.








