HOBO ECH2O EC-5 Soil Moisture Smart Sensor
Features
- Measures a 0.3-liter volume of soil
- High-frequency (70 MHz) circuit provides good accuracy even in high-salinity and sandy soils
- Compatible with Onset stand-alone and web-based weather stations
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Onsite ECH2O EC-5 soil moisture smart sensor offers a two-tine design for easy installation in in an affordable package. This sensor integrates the field-proven ECH2O EC-5 Sensor and a 12-bit A/D. It provides ±3% accuracy in typical soil conditions, and ±2% accuracy with soil-specific calibration. Readings are provided directly in volumetric water content. This sensor is designed to maintain low sensitivity to salinity and textural effects.
Measurement Range
In soil: 0 to 0.550(m³/m³)
Extended range: -0.401 to 2.574 m³/m³ (full scale)
The sensor is capable of providing readings outside the standard volumetric water content range. This is helpful in diagnosing sensor operation and installation. See User Manual for additional information.
Accuracy: ±0.031 m³/m³ (±3.1%) typical 0 to 50°C (32° to 122°F); ±0.020 m³/m³ (±2%) with soil specific calibration.
This is a system-level accuracy specification and is comprised of the ECH2O probe's accuracy of ±0.03 m³/m³ typical (±0.02 m³/m³ soil specific) plus the smart sensor adapter accuracy of ±0.001 m³/m³ at 25°C (77°F). There are additional temperature accuracy deviations of ±0.003 m³/m³ / °C maximum for the ECH2O probe across operating temperature environment, typical <0.001 m³/m³ / °C. (The temperature dependence of the smart sensor adapter is negligible.)
Resolution: 0.0007 m³/m³ (0.07%)
Soil probe dimensions: 89 x 15 x 1.5 mm (3.5 x 0.62 x 0.06 in.)
Weight: 180 grams (6.3 oz)
Decagon ECH2O probe part No.: EC-5
Sensor operating temperature: 0° to 50°C (32° to 122°F).
While the sensor probe and cable can safely operate at below-freezing temperatures (to -40°C/F) and up to 75°C (167°F), the soil moisture data collected at these extreme temperatures is outside of the sensor's accurate measurement range.
Volume of influence: 0.3 liter (10.1 oz)
Sensor frequency: 70 MHz
Bits per sample: 12
Number of data channels: 1
Note: A single smart sensor-compatible HOBO logger can accommodate 15 data channels and up to 100 m (328 ft) of smart sensor cable (the digital communications portion of the sensor cables)
Measurement averaging option: No
Cable length available: 5 m (16 ft)
Length of Smart Sensor network cable: 0.5 m (1.6 ft)
In The News
Testing CO2 Removal Strategies in the Pacific Northwest
The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.
Smart Buoys Advance Climate Monitoring in Swiss Lakes
Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.
Connecting with Nature in Real-Time at the Abernathy Field Station
Just five miles away from Washington and Jefferson (W&J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.
Riding the Renewable Wave: Testing Wave Energy Converters at Oregon’s PacWave Site
Seven miles off Oregon’s weather-beaten coastline, the world’s biggest wave power testing facility, PacWave, is primed to put the latest renewable energy technology to the test. “There is a huge amount of energy that is not harvested in the ocean,” states the team at Oregon State University involved in the PacWave project. When it comes to harnessing the power of the waves, “It's exciting because it [wave power] is a non-polluting, non-carbon burning technology,” the team says. Wave Power The U.S. Energy Information Administration explains that tidal energy harnesses the flow of seawater in depth under the gravitational forces exerted by the sun and moon–the drivers of tides–while wave energy derives from the kinetic energy of wind-blown surface waves.





