LI-COR Underwater PAR Sensor Lowering Frame

The 2009S LI-COR Underwater PAR Sensor Lowering Frame provides support for the placement of two underwater cosine sensors.

Features

  • Stability for proper orientation of sensors
  • Minimizes shading effects
  • Lower mounting ring for stabilizing weight attachment
Your Price $230.00
Stock Check Availability  

Overview
The 2009S LI-COR Underwater PAR Sensor Lowering Frame provides support for the placement of two underwater cosine sensors, one each for downwelling or upwelling radiation or a single LI-193SA Spherical Quantum Sensor. The 2009S provides stability for proper orientation of the sensor(s), minimizes shading effects, and features a lower mounting ring for stabilizing weight attachment if necessary.

  • Construction: Anodized aluminum
  • Size: 51.4 L (20.0") x 35.6 cm W (14.0")
  • Weight: 327g (0.72 lbs)
Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
LI-COR Underwater PAR Sensor Lowering Frame
2009S
Lowering frame for LI-COR underwater PAR sensors
$230.00
Check Availability  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

LI-COR PAR sensors detect light waves to aid aquatic ecosystem research

Understanding how the sun’s rays fuel phytoplankton or plant growth may prove valuable to understanding an aquatic ecosystem. A pair of sensors from LI-COR can help researchers studying algal blooms and aquatic vegetation by measuring how much light enters underwater environments. Sitting below the surface, the LI-192 flat-lensed photosynthetically active radiation sensor and the LI-193 spherical PAR sensor measure light waves striking their silicon photovoltaic detectors.  They sense light wavelengths between 400 and 700 nanometers, which is the ideal range for photosynthesis. Dave Johnson, a LI-COR product manager for the LI-190 series, said the sensors’ individual designs make them ideal for different applications.

Ohio State greenhouse nurtures 'fruit fly of the plant world'

The Arabidopsis Biological Resource Center at Ohio State University was established in 1991 with funding from the National Science Foundation. Part of the center’s job is to meet demand for seed of the arabidopsis plant, which is widely used for genetic modeling. “A lot of the plants we’re growing are for seed production,” said Joan Leonard, greenhouse coordinator. “Arabidopsis is a good example. We call it the ‘fruit fly of the plant world,’ and it takes about six to eight weeks to go from seed to plant.” Arabidopsis is one of the many plants that will benefit from a new LI-COR PAR sensor being installed on campus. It will help manage light schedules for greenhouse plants.

Testing CO2 Removal Strategies in the Pacific Northwest

The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.

Smart Buoys Advance Climate Monitoring in Swiss Lakes

Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.