Hach Intellical CDC401 Field 4-Poles Graphite Conductivity Cells

The Hach Intellical CDC401 Field 4-Poles Graphite Conductivity Cell is a digital, graphite, 4-pole conductivity cell with a temperature sensor.

Features

  • Available with 5, 10, or 15m cable
  • Stainless steel body
  • Reinforced, steel-sheathed cables
Starting At $1,196.00
Stock Drop Ships From Manufacturer  

Overview
The Hach Intellical CDC401 is a digital, graphite, 4-pole conductivity cell with a temperature sensor. This Rugged CDC401 version is built with a stainless steel body, ensuring sufficient weight to the probe for easy outside handling, the sensing part is protected by a shroud, and the connection is ensured by strong and visible yellow cable onto which you can clip depth markers (optional accessories), making the CDC401 rugged models specially designed for field use.

Applications
The Hach CDC401 is available with a 5, 10, 15, or 30-meter cable. The CDC401 Rugged is ideal for measuring electrical conductivity, salinity, resistivity, or total dissolved solids (TDS) in all types of external environments such as rivers, surface and ground waters, ponds, lakes, sea, wastewater plants, source waters, drinking water reservoirs for water quality, environmental and treatment process purposes.

Accuracy:

Cond: ±0.5% of range

Salinity: ±0.1, ±1 digit

TDS: ±0.5% ±1 digit

Cable Length(s):

5m (16.40 ft), 10m and 15m

Electrode Type:

Conductivity Cell;
4 Poles - Graphite

Kit?:

No

Length:

223 mm (8.73 in.)

Method Type:

Field: 4 Poles - Graphite

Parameter:

Conductivity

Probe Type:

Rugged

Product Kit:

Model: CDC401

Accessories Included: None

Range:

Conductivity: 0.0 µS/cm - 200 mS/cm

TDS: 0.00 mg/L - 50.0 g/L as NaCl

Salinity: 0 - 42 ppt or ‰

Resistivity: 2.5 Ωcm - 49 MΩcm

Resolution:

0.01/0.1 (5 digits max.)

Sample depth:

45 mm (1.77 in.)

Sensor material:

Noryl / Stainless Steel

Sensor Type:

4-poles conductivity probe Graphite, k = 0.40 cm-1

Temperature Accuracy:

±0.3 °C (±0.54 °F)

Temperature Range:

-10 - 110 °C (14 - 230 °F)

Temperature Resolution:

0.1 °C (0.18 °F)

Test requirements:

Parameter Needed: Conductivity

Minimum Sample Depth (mm): 45

Thermistor:

ATC

Warranty:

12 months

Water Resistance:

IP67, waterproof for 24 hours at a depth of 30 meters

Weight:

0.8 kg

What's included?:

IntelliCAL CDC401 Rugged Conductivity Cell, 5 m cable, protective shroud kit, Test certificate, and Basic User Manual.

IntelliCAL CDC401 Rugged Conductivity Cell, 5 m cable, protective shroud kit, Test certificate, and Basic User Manual.

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Hach Intellical CDC401 Field 4-Poles Graphite Conductivity Cells
CDC40105
Intellical CDC401 Field 4-Poles Graphite Conductivity Cell, 5m Cable
$1,196.00
Drop Ships From Manufacturer  
Hach Intellical CDC401 Field 4-Poles Graphite Conductivity Cells
CDC40110
Intellical CDC401 Field 4-Poles Graphite Conductivity Cell, 10m Cable
$1,255.00
Drop Ships From Manufacturer  
Hach Intellical CDC401 Field 4-Poles Graphite Conductivity Cells
CDC40115
Intellical CDC401 Field 4-Poles Graphite Conductivity Cell, 15m Cable
$1,322.00
Drop Ships From Manufacturer  
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Testing CO2 Removal Strategies in the Pacific Northwest

The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.

Smart Buoys Advance Climate Monitoring in Swiss Lakes

Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.

Connecting with Nature in Real-Time at the Abernathy Field Station

Just five miles away from Washington and Jefferson (W&J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.

Riding the Renewable Wave: Testing Wave Energy Converters at Oregon’s PacWave Site

Seven miles off Oregon’s weather-beaten coastline, the world’s biggest wave power testing facility, PacWave, is primed to put the latest renewable energy technology to the test. “There is a huge amount of energy that is not harvested in the ocean,” states the team at Oregon State University involved in the PacWave project. When it comes to harnessing the power of the waves, “It's exciting because it [wave power] is a non-polluting, non-carbon burning technology,” the team says. Wave Power The U.S. Energy Information Administration explains that tidal energy harnesses the flow of seawater in depth under the gravitational forces exerted by the sun and moon–the drivers of tides–while wave energy derives from the kinetic energy of wind-blown surface waves.