Eno Scientific WS 131 Flow Meter
Features
- Flow meter housings are available in 5 sizes
- Data can be displayed and logged by the Well Sounder 2010 PRO
- Includes the total flow, flow rate and recovery rate functions
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Eno Scientific WS 131 features a simple design consisting of a PVC housing and an electronic sensor module that easily attaches to the housing using a hand-tightened ring nut. Once the sensor is installed, it transmits electrical pulses that are generated as water moves past the paddle wheel. The amount of water volume that passes through the pipe can be interpreted by an Eno Scientific water level meter like the Well Sounder 2010 Pro. During inactivity, the sensor can be removed and replaced with an inexpensive plug with the same kind of hand-tightened ring nut concept.
Design
Flow meter housings are available in various sizes. The 1", 1.5" and 2" housings are in-line tees made with Type 1 PVC with sockets for schedule 40 PVC pipes, and compatible with common PVC piping and adhesives. The 3" and 4" housings are saddle tees made of Type 1 PVC which clamps onto schedule 40 PCV pipes. The paddle wheel is made of a tough polyethylene material and is the only object subject to wear in the entire system. In the case of highly abrasive water flow, the paddle wheel may experience wear with time but is easily replaced without tools.
Mechanics
The electronic flow sensor operates off a 5-24 VDC power supply and provides an output voltage on the signal line, which switches between Vin and ground as the paddle wheel turns. Data collection is configurable by either plugging a ready-to-plug cable into the Well Sounder 2010 Pro, or with three-wire leads for connection to other data logging devices. An accessory splitter is necessary for the Well Sounder to monitor and log data from both the flow meter and the probe.
- Materials
- Housings: Type 1 PVC
- Paddle Wheel: HDPE
- O-Ring: Buna N
- Axle: Tungsten Carbide
- Plumbing & Physical
- Pipe Size: Schedule 40 PVC
- Test Pressure: 240 psi
- Temperature: 32 – 140° F (0 – 60° C)
- Dimensions
- 1" Housing: 5.75 x 4.5 x 2.4″
- 1.5" Housing: 6.25 x 5.25 x 2.4″
- 2" Housing: 7.11 x 5.75 x 3″
- 3" Housing: 5.0 x 5.5 x 6.5″
- 4" Housing: 5.0 x 6.5 x 7.5″
- Clearance for Sensor Removal: 3.5”
- Electrical
- Power: 5 – 24V at 500 uA max
- Output Signal: Pull-to-ground (+V – 0V)
- Pulse Width: ~5mS
- Frequency: 0.3 – 200 Hz
- (1) Flow meter
In The News
Testing CO2 Removal Strategies in the Pacific Northwest
The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.
Smart Buoys Advance Climate Monitoring in Swiss Lakes
Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.
Connecting with Nature in Real-Time at the Abernathy Field Station
Just five miles away from Washington and Jefferson (W&J) College is the 57-acre Abernathy Field Station . Generously donated by the Abernathy family in 2017, the field station has served as an outdoor lab to hundreds of undergraduate students over the years. Many classes use the Abernathy Field Station every week. For example, in BIO 111, students spend 15 weeks conducting their own research at the field station using a combination of sampling, field observations, and real-time environmental data, giving them a look into the world of science and a closer relationship with nature. “We like to start the students in the research process in their first Biology class.
Riding the Renewable Wave: Testing Wave Energy Converters at Oregon’s PacWave Site
Seven miles off Oregon’s weather-beaten coastline, the world’s biggest wave power testing facility, PacWave, is primed to put the latest renewable energy technology to the test. “There is a huge amount of energy that is not harvested in the ocean,” states the team at Oregon State University involved in the PacWave project. When it comes to harnessing the power of the waves, “It's exciting because it [wave power] is a non-polluting, non-carbon burning technology,” the team says. Wave Power The U.S. Energy Information Administration explains that tidal energy harnesses the flow of seawater in depth under the gravitational forces exerted by the sun and moon–the drivers of tides–while wave energy derives from the kinetic energy of wind-blown surface waves.












