AMS Telescoping Augers
Features
- Complete with a comfortably gripped cross handle and extendable extension piece
- Used for sampling to depths of up to 8 feet
- Augers are 5' 4" long and weigh between 5 to 8 lbs
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
All AMS telescoping soil augers come complete with a comfortably gripped cross handle and an extendable extension piece. Telescoping augers are used for sampling to depths of 8'. These soil augers use snap pins to lock the cross handle, two concentric extendable extension pieces, and the bucket auger together. It is designed for easy transport and storage. Telescoping augers are just 5' 4" long and weigh between 5 to 8 lbs. The soil auger heads have a stainless steel cylinder and high carbon steel bits with a tungsten carbide hard surfaced cutting edge.
Lengths
Non-Extendable Length – 5' 4"
Partially Extended Length – 6' 6"
Fully Extended Length – 8'
- (1) Auger, Telescoping
- (2) 4' – 8' Telescoping Extension
- (1) 18" Telescoping Cross Handle
In The News
Amazon sediment studied through Andes trip down tributary
A team of researchers led by scientists from the University of South Carolina Dornsife traveled to the Peruvian jungle to understand how sediment and plant matter travel down the Andes Mountains and into the Amazon River system, according a first-person account from Sarah Feakins, assistant professor of earth sciences at USC Dornsife. The team focused on a tributary to the Amazon River, the Kosnipata River. They started at the headwaters, traveling up treacherous gravel mountain roads. They ended in the Amazonian floodplain, where Feakins said the river was orange from colloids in the soil. The team spent most of their time collecting and filtering water to obtain sediment samples. Feakins described the work as collecting by day and filtering by night.
50-year fertilizer study shows mixed results on soil quality
A new report authored by researchers from the University of Nebraska-Lincoln suggests that the use of inorganic nitrogen and phosphorus for fertilization improves crop yields, but can have negative impacts on soil quality, the American Society of Agronomy has reported. A study of crop lands in western Kansas has shown that inorganic fertilization increases organic carbon stocks while damaging soil’s structural quality. Researchers collected soil samples from experimental fields fertilized with various amounts of inorganic fertilizers to determine how different nutrient levels might impact soil quality. The results showed that applying nitrogen and phosphorus at high rates can expedite soil erosion and cause other structural issues.
Testing CO2 Removal Strategies in the Pacific Northwest
The ocean plays a key role in carbon dioxide (CO2) removal and storage, also known as carbon sequestration. However, with increasing emissions, a large amount of CO2 escapes into the atmosphere, worsening climate change and leading to increases in surface temperatures. In order to mitigate some of these impacts, researchers like Ally Savoie at the Pacific Northwest National Laboratory (PNNL) are working hard to identify ways to safely improve the CO2 removal and storage capabilities in the ocean. Savoie started her career at Wright State University , where she worked in Silvia Newell’s lab examining biogeochemical cycling of nutrients in a river system. From there, she decided to pursue a master’s in marine science at the University of Southern Mississippi with Dr.
Smart Buoys Advance Climate Monitoring in Swiss Lakes
Lakes are sentinels of climate change . Globally, they are warming at an unprecedented but uneven rate, and in many places they also face direct human pressure, including from agriculture and recreation. In the Alps, scientists generally agree that climate change is of particular threat to remote lakes , where more pronounced warming threatens fragile ecosystems. Alpine Lakes in a Changing Climate Matteo Tonellotto is part of the team at the Environmental Observatory of the Italian-speaking region of Switzerland (OASI)–a multidisciplinary team of scientists, IT specialists, and chemical laboratory technicians committed to collecting, managing, and integrating high-quality environmental data.









